Metabolic engineering of plant alkaloid biosynthesis.

نویسندگان

  • F Sato
  • T Hashimoto
  • A Hachiya
  • K Tamura
  • K B Choi
  • T Morishige
  • H Fujimoto
  • Y Yamada
چکیده

Plant alkaloids, one of the largest groups of natural products, provide many pharmacologically active compounds. Several genes in the biosynthetic pathways for scopolamine, nicotine, and berberine have been cloned, making the metabolic engineering of these alkaloids possible. Expression of two branching-point enzymes was engineered: putrescine N-methyltransferase (PMT) in transgenic plants of Atropa belladonna and Nicotiana sylvestris and (S)-scoulerine 9-O-methyltransferase (SMT) in cultured cells of Coptis japonica and Eschscholzia californica. Overexpression of PMT increased the nicotine content in N. sylvestris, whereas suppression of endogenous PMT activity severely decreased the nicotine content and induced abnormal morphologies. Ectopic expression of SMT caused the accumulation of benzylisoquinoline alkaloids in E. californica. The prospects and limitations of engineering plant alkaloid metabolism are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ALKALOID BIOSYNTHESIS IN PLANTS: Biochemistry, Cell Biology, Molecular Regulation, and Metabolic Engineering Applications.

Recent advances in the cell, developmental, and molecular biology of alkaloid biosynthesis have heightened our appreciation for the complexity and importance of plant secondary pathways. Several biosynthetic genes involved in the formation of tropane, benzylisoquinoline, and terpenoid indole alkaloids have now been isolated. The early events of signal perception, the pathways of signal transduc...

متن کامل

Enhancing Tropane Alkaloid Production Based on the Functional Identification of Tropine-Forming Reductase in Scopolia lurida, a Tibetan Medicinal Plant

Scopolia lurida, a native herbal plant species in Tibet, is one of the most effective producers of tropane alkaloids. However, the tropane alkaloid biosynthesis in this plant species of interest has yet to be studied at the molecular, biochemical, and biotechnological level. Here, we report on the isolation and characterization of a putative short chain dehydrogenase (SDR) gene. Sequence analys...

متن کامل

Antisense RNA-mediated suppression of benzophenanthridine alkaloid biosynthesis in transgenic cell cultures of California poppy.

California poppy (Eschscholzia californica Cham.) cell cultures produce several benzophenanthridine alkaloids, such as sanguinarine, chelirubine, and macarpine, with potent pharmacological activity. Antisense constructs of genes encoding two enzymes involved in benzophenanthridine alkaloid biosynthesis, the berberine bridge enzyme (BBE) and N-methylcoclaurine 3'-hydroxylase (CYP80B1), were intr...

متن کامل

Transcription factors in alkaloid biosynthesis.

Higher plants produce a large variety of low-molecular weight secondary compounds. Among them, nitrogen-containing alkaloids are the most biologically active and are often used pharmaceutically. Whereas alkaloid chemistry has been intensively investigated, alkaloid biosynthesis, including the relevant biosynthetic enzymes, genes and their regulation, and especially transcription factors, is lar...

متن کامل

Alkaloid biosynthesis: metabolism and trafficking.

Alkaloids represent a highly diverse group of compounds that are related only by the occurrence of a nitrogen atom in a heterocyclic ring. Plants are estimated to produce approximately 12,000 different alkaloids, which can be organized into groups according to their carbon skeletal structures. Alkaloid biosynthesis in plants involves many catalytic steps, catalyzed by enzymes that belong to a w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 98 1  شماره 

صفحات  -

تاریخ انتشار 2001